Update on NIST Prostate-Seed Brachytherapy Standards and Calibrations

Michael G. Mitch and Stephen M. Seltzer
Ionizing Radiation Division
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

April 4, 2005

NIST continues in its active program of brachytherapy source dosimetry measurements. This update concerns an application area that has experienced vigorous growth and interest: the treatment of prostate cancer by radiation-seed implants.

The primary air-kerma-strength standard for radioactive seeds used in prostate brachytherapy is maintained at NIST using the Wide-Angle Free-Air Chamber (WAFAC). Thirty-two seed designs from eighteen manufacturers have been calibrated and characterized at NIST since the WAFAC standard was introduced in 1999 (see Table 1 for current sources). Seed manufacturers periodically send batches of three to five seeds to NIST for calibration. These seeds are then forwarded to several Accredited Dosimetry Calibration Laboratories (ADCLs) to establish and subsequently maintain the secondary standard at these laboratories for use in calibrating clinical chambers. The NIST measurement program includes measures to ensure that seeds submitted for WAFAC calibration are consistent and representative of that particular seed design so that associated errors will not be propagated down the traceability chain to the ADCLs, seed manufacturers, and therapy clinics. To address this issue, several additional measurements are made to further characterize a seed beyond the initial air-kerma strength calibration. The calibration coefficients of three well-ionization chambers (two commercial models and one designed and built at NIST) are determined for each seed, and compared to past results to confirm consistency of well-chamber-to-WAFAC relative response. Well-chamber-response-to air-kerma-strength-ratio histories are kept for all seed models, and NIST data is compared to well-chamber measurement results from the ADCLs. Stability of the WAFAC and the well chambers is verified by periodic measurements of instrument response to an 241Am source (WAFAC) or a 90Sr/90Y source (well chambers).

For at least one seed from each batch, the photon spectrum emergent in the plane bisecting the seed axis is measured using a collimated high-purity germanium (HPGe) detector. The pulse-height distribution is converted to the absolute energy distribution of fluence rate emerging from the seed, which is then used to calculate air-kerma strength. This completely independent determination is compared with WAFAC results. Seed anisotropy is characterized by three additional measurements, including relative WAFAC measurements at 45 degree intervals about the long axis of the seed, x-ray spectra.
measured with the seed positioned at 90 degree intervals about an axis perpendicular to
the mid-point of the long axis of the seed, and radiochromic film measurements in
contact-exposure geometry. Variations in the relative response of the WAFAC and well-
ionization chambers have been attributed to a combination of differences in measurement
geometry, fluorescence x-ray emission from non-radioactive seed components, and
anisotropy of x-ray emission and self-absorption (attenuation) effects due to internal seed
geometry. Seed-characterization measurements assist in the identification of aberrantly
produced seeds that should be eliminated from the calibration process. Such complete
characterization of a seed is necessary for quality assurance of WAFAC measurements,
and to maintain accuracy in the transfer of standards to the ADCLs, seed manufacturers,
and therapy clinics.

Table 1. Low-energy photon-emitting brachytherapy sources with NIST calibrations.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Manufacturer</th>
<th>Distributor</th>
<th>Seed Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I</td>
<td>International Brachytherapy</td>
<td>IBt</td>
<td>InterSource125 (1251L)</td>
</tr>
<tr>
<td>125I</td>
<td>Bebig</td>
<td>Bebig</td>
<td>IsoSeed I-125 (I25.S06)</td>
</tr>
<tr>
<td>125I</td>
<td>Best Medical International</td>
<td>Best Medical</td>
<td>Best I-125 (2301)</td>
</tr>
<tr>
<td>125I</td>
<td>Implant Sciences</td>
<td>Implant Sciences</td>
<td>I-Plant (3500)</td>
</tr>
<tr>
<td>125I</td>
<td>Bard Brachytherapy</td>
<td>Bard Brachytherapy</td>
<td>BrachySource (STM1251)</td>
</tr>
<tr>
<td>125I</td>
<td>Theragenics Corporation</td>
<td>Theragenics</td>
<td>I-Seed I-125 (I25.S06)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>Amersham Health</td>
<td>GE Healthcare</td>
<td>OncoSeed (6711)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>Amersham Health</td>
<td>GE Healthcare</td>
<td>EchoSeed (6733)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>DraxImage</td>
<td>DraxImage</td>
<td>BrachySeed I-125 (LS-1)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>Mills Biopharmaceuticals</td>
<td>Mentor</td>
<td>ProstaSeed (125SL, 125SH)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>IsoAid, LLC</td>
<td>IsoAid</td>
<td>Advantage I-125 (IAI-125A)</td>
</tr>
<tr>
<td>125I on Ag</td>
<td>Isotron</td>
<td>Nucletron</td>
<td>selectSeed I-125 (130.002)</td>
</tr>
<tr>
<td>103Pd</td>
<td>Theragenics Corporation</td>
<td>Theragenics</td>
<td>TheraSeed (200)</td>
</tr>
<tr>
<td>103Pd</td>
<td>International Brachytherapy</td>
<td>IBt</td>
<td>InterSource103 (1031L)</td>
</tr>
<tr>
<td>103Pd</td>
<td>Best Medical International</td>
<td>Best Medical</td>
<td>Best Pd-103 (2335)</td>
</tr>
<tr>
<td>103Pd</td>
<td>DraxImage</td>
<td>DraxImage</td>
<td>BrachySeed Pd-103 (Pd-1)</td>
</tr>
<tr>
<td>103Pd</td>
<td>RadioMed Corporation</td>
<td>RadioMed</td>
<td>Genetra</td>
</tr>
<tr>
<td>131Cs</td>
<td>IsoRay Inc.</td>
<td>IsoRay</td>
<td>CS-1</td>
</tr>
</tbody>
</table>