NMIJ Research Activities relevant to LED Sources for Photometry

Tatsuya Zama
National Metrology Institute of Japan (NMIJ)
Overview of NMIJ R&D relevant to LED Calibration

2007:
- Development of Standard LEDs for Low-Power LED Calibration.
- The development is based on a joint research with a Japanese LED manufacture, NICHIA.

2013: Luminous Flux Standard LED for High-Power LED Calibration

2014:
- Radiant Flux Standard LED for UV-LED Calibration
- Total Spectral Radiant Flux Standard for 4π geometry

2015:
- Standard LED for Total Spectral Radiant Flux Calibration at 2π geometry
Development of Standard LEDs for Low-Power LED Calibration

- NMIJ and NICHIA corporation (Japanese LED manufacturer) jointly developed those standard LEDs.
- The error due to LED alignment is minimized by fixing LED-chip to the body.
- The ambient temperature dependency is minimized by introducing a thermo-module and optimizing the control for stabilizing the LED-chip temperature.
- The luminous intensity distribution is optimized by introducing customized LED tips.
- There are 4 different colors (White, Blue, Green and Red).

The luminous intensity distribution of the standard LED for luminous flux calibration approximately equal to Lambertian.
Development of Luminous Flux Standard LEDs for High-Power LED Calibration (1)

- NMIJ and NICHIA corporation jointly developed the standard LEDs.
- Luminous intensity distribution and spectral power distribution is optimized by introducing customized LED tips.
- The ambient temperature dependency is minimized by introducing a thermo-module and optimizing the control for stabilizing the LED-chip temperature.
- There are 4 different colors (White, Blue, Green and Red).

Luminous flux standard LED for high-power LED Calibration (luminous flux is about 60 lm)

Spectral power distributions of the respective color LEDs

Angular dependence of spectral power distributions

- High color uniformity
- Board spectral power distribution
- The valley of the spectrum is shallow and not wide
Development of Luminous Flux Standard LEDs for High-Power LED Calibration (2)

The ambient temperature dependency of the standard LED (white) and a typical white LED.

The operation temperature at each measurement point "x" shown in the above thermal image.

The standard LED (white)
- point a: 63 °C
- point b: 47 °C
- point c: 38 °C
- point d: 28 °C

Typical white LED

Thermal control system based on thermostatic chamber
Development of Radiant Flux Standard LEDs for UV-LED Calibration

- NMIJ and NICHIA corporation jointly developed the LEDs.
- Radiant intensity distribution is optimized by introducing customized LED tips.
- The ambient temperature dependency is minimized.
- The LEDs are calibrated by using a gonio-spectroradiometer and a standard detector whose spectral irradiance responsivity scale was calibrated.
- The center wavelengths of the transfer standard are 365 nm and 385 nm.

Spectral power distributions of the LEDs:

Radiant intensity distribution and the standard detector.
The testing system consists of a thermostatic chamber, a power supply and monitor instruments.

- Ambient temperature dependency and aging characteristics of light source is evaluated.
- Electrical properties of light source is monitored by waveform analyzer and oscilloscope.
- Photometric and radiometric properties of light source is monitored by photometer and array-spectrometer.

The testing system is used for evaluating light sources, such as commercial LED lamps, and used for selecting the artifacts which is appropriate for calibration.
Development of Testing System for Light Source Evaluation (2)

- The thermistor probes in the thermostatic chamber monitors the temperature of light source and the ambient temperature around light source.
- The time required for temperature stabilization is evaluated.
- The temperature difference on light source body is measured and thermal convection effect around the light source is evaluated.
- The light sources, such as commercial LED lamps, are evaluated for selecting the artifacts which is appropriate for calibration.

Typical temperature variation properties of LED lamp body and the thermostatic chamber. The thermistor probes are set on the position shown the picture and the opposite position.
LED Lamp Test Result

- One of test result of selected commercial LED lamp.
- Luminous flux reproducibility of the selected LED lamps are lower than 1 %.
- Several kind of selected LED lamps were used for IEA 4E SSL Annex Interlaboratory Comparison.
- The results of the comparison was referred to by the proficiency testing of Japanese testing laboratories.

Evaluation results of luminous intensity distribution and spectral distribution of a commercial LED lamp

Ambient temperature dependency (Normalized by 23 ºC)

Voltage dependency (Normalized by 100 V)
Establishment of Total Spectral Radiant Flux Standard for 4π Geometry

- Total spectral radiant flux (TSRF) standard in visible range (360 nm to 830 nm) was established by using a gonio-photometer and a gonio-spectroradiometer.
- A halogen lamp, which has sufficiently high CCT and stable optical power, was selected as the transfer standard lamp for TSRF calibration.

Relative Expanded Uncertainty ($k=2$): 4.0 % to 3.1% (varied with wavelength)

Spectral ageing trend of the TSRF standard lamps after the 100 h pre-seasoning

- A 24V-150W QH lamp
- Total luminous flux: approximately 3 000 lm
- CCT: approximately 3 100 K
Two Kinds of Measurement Configurations

- Integrating sphere has two kinds of measurement configurations, such as 4π and 2π, different in light source setting.
- 4π and 2π configurations are appropriate for omni-directional and directional light sources, respectively.
- LED is principally directional light source, so 2π configuration is appropriate for measuring LED chip or chip-on-board product, such as LED array or LED module.
Development of LED based Light Source Appropriate for Total Spectral Radiant Flux Standard for 2π Geometry

- NMIJ and Nichia Corporation have developed a LED based light source which is appropriate for spectral radiant flux standard for 2π Geometry.
- The spectrum of the light source is broader than that of the commercially available LED in wavelength. The radiation spectrum covers the wavelength of 380 nm to 780 nm.
- The wavelength range in which spectrum does not have steep peaks or valleys is much wider than that of the commercially available LED.

![Diagram showing several kind of LED chips and phosphors, peak width broadening, and wavelength range expanding.](image)
Conducting a Proficiency Testing for LED Based Lighting

Accreditation Body

- **IAJapan**
- **JNLAAccreditation**
- **Calibration Service**
- **Proficiency Test Service**
- **Testing Report**
- **Accredited Testing Laboratories**

Proficiency Test Report

- **Agency for Natural Resources and Energy**
- **Japan Environment Association ECO Mark Office**

High-Quality LED

- **Top Runner ECO Mark Conformance**

JIS: Japanese Industrial Standards (Document Standard)

The performance information is guaranteed by public system. It is reliable!
Thank you for your attention
Development of Total Spectral Radiant Flux Standard

NMIJ gonio-spectroradiometer with photometric distance at 2.7 m

Candidate of transfer standard lamp

Example of a seasoning test
Sphere Spectroradiometer System for Total Spectra Radiant Flux Standard

NMIJ 1.65 m sphere spectroradiometer system

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)
Beam Scanner for 2π Illumination Geometry

Beam Scanner Head
- Collimate beam by high-power LEDs
- Temperature control for LEDs by thermal-electrical cooler with change of less than 0.1% over 8 hours

The beam scanner for 2π illumination geometry (left)

View through the port hole, taken with a fish eye lens

SRDF of NMIJ integrating sphere system under 2π illumination geometry
Development of Total Spectral Radiant Flux Standard for 2π sphere geometry

- Strong industrial demand for a standard under 2π geometry in integrating sphere-based measurement
- Suitable for 2π sources such as high-power LEDs or OLEDs, whose radiation only emit within the front hemisphere of them
- Total spectral radiant flux (TSRF) standard under 2π geometry being developed
 - Based on a gonio-photometer/spectroradiometer
 - Installing a new photometer for the realization of the 2π TSRF standard
- Development of a transfer standard suitable for the 2π TSRF standard
 - Luminous intensity distribution being approximated to Lambertian
 - Spectral range: 380 nm to 780 nm, Total luminous flux: around 200 lm
Outline of the Interlaboratory Comparison in Japan

- Number of the participant: 12 laboratories
 (3: public test laboratories, 9: manufactures)

- Artifacts
 We selected 5 types of artifacts for the IC: 4 are LED lamps and one is an incandescent lamp

- Schedule: Nov 2012～Jun 2013
 The participant laboratories were divided into 4 groups.
 Until end of March, 10 participants finished their measurements.

Fig. IC artifacts
What we did for our Interlaboratory Comparison

✓ April 2012～July 2012: Selection of the artifacts for the IC and Setup the sphere-spectroradiometer system
 • The 4 LED lamps and the incandescent lamp were selected as our artifacts
 • The sphere-spectroradiometer system was set up for calibrating the IC artifacts.

✓ July 2012～Sep 2012: Our working standards calibration
 • The working standards were calibrated by our gonio-photometer
 (Our Total Spectral Radiant Flux standard lamps and additional artifacts’ set)
 • One artifacts’ set was calibrated for the comparison with NIST.

✓ Sep 2012～Nov 2012: Validation of our sphere-spectroradiometer comparison.
 • The correction factor caused by the spatial non-uniformity of our sphere-spectroradiometer were derived.
 • Other error factors were evaluated.

✓ Nov 2012～Jun 2013: Calibration and management for Interlaboratory comparison
 • We started our IC artifact’s circulation in Japan from middle of November,
 • Until end of March 2013, 10 participants finished their measurements.
The IC Artifacts in Japan

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Lamp Type</th>
<th>Manufacture/Model</th>
<th>Rated voltage</th>
<th>Rated Power</th>
<th>Power Factor</th>
<th>Nominal CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIST-IAC/IDC</td>
<td>Incandescent</td>
<td>Toshiba Lighting/ Total luminous flux standard lamp</td>
<td>100V, AC 50 Hz /100 V DC</td>
<td>200 W</td>
<td>1.0</td>
<td>2800 K</td>
</tr>
<tr>
<td>AIST-OD</td>
<td>Omnidirectional</td>
<td>NEC Lighting/ LDA9L-G</td>
<td>100V, AC 50 Hz</td>
<td>9.0W</td>
<td>0.91</td>
<td>3000 K</td>
</tr>
<tr>
<td>AIST-D</td>
<td>Directional</td>
<td>Mitsubishi Electric Osram/ LDR5L-W-E17</td>
<td>100V, AC 50 Hz</td>
<td>5.0 W</td>
<td>0.63</td>
<td>3000 K</td>
</tr>
<tr>
<td>AIST-HCCT</td>
<td>High CCT</td>
<td>NEC Lighting /LDA9N-G</td>
<td>100V, AC 50 Hz</td>
<td>9.0 W</td>
<td>0.95</td>
<td>5100 K</td>
</tr>
<tr>
<td>AIST-LPF</td>
<td>Low power-factor</td>
<td>Hitachi Appliances/ LDA11D-G</td>
<td>100V, AC 50 Hz</td>
<td>11.4 W</td>
<td>0.58</td>
<td>6000 K</td>
</tr>
</tbody>
</table>
Artifacts Drift (Difference of go and return measurements in AIST)

We confirmed reliability of our artifacts.
AIST-IAC/IDC Incandescent

Fig. AIST-IAC/IDC Toshiba Lighting/Total luminous flux standard lamp
a) Picture, b) Angular distribution, c) Spectral distribution

Fig. Stability of AIST-IAC/IDC

Fig. Angular distributions of color
AIST-OD: Omnidirectional

Fig. AIST-OD: NEC Lighting/LDA9L-G
a) Picture, b) Angular distribution, c) Spectral distribution

Fig. Temperature dependence (Δ=0.0% @ 23°C)

Fig. Voltage dependence (Δ=0.0% @ 100V)
AIST-D: Directional

Fig. AIST-D Mitsubishi Electric Osram/LDR5L-W-E17
a) Picture, b) Angular distribution, c) Spectral distribution

Fig. Temperature dependence (Δ=0.0% @23°C)

Fig. Voltage dependence (Δ=0.0% @100V)
AIST-HCCT: High CCT

Fig. AIST-HCCT: NEC Lighting/LDA9N-G
 a) Picture, b) Angular distribution, c) Spectral distribution

Fig. Temperature dependence (Δ=0.0% @23°C)

Fig. Voltage dependence (Δ=0.0% @100V)
AIST-LPF: Low power-factor

Hitachi Appliances/LDA11D-G
a) Picture, b) Angular distribution, c) Spectral distribution

Fig. Temperature dependence (Δ=0.0% @23°C)

Fig. Voltage dependence (Δ=0.0% @100V)
Comparison results between NIST and NMIJ with Japan IC Artifacts

Last year (Sep/2012～Nov/2012), NMIJ sent IC Artifacts to NIST.

Fig. Comparison results (left fig: luminous flux et.al, right fig: chromaticity)
Development of Luminous Flux Standard LEDs for High-Power LED Calibration

- NMIJ and NICHIA corporation jointly developed the standard LEDs.
- Optimizing luminous intensity distribution and spectral power distribution by introducing customized LED tips.
- The temperature dependency is reduced by a thermo-module introduced for stabilizing the LED-chip temperature.
- There are 4 different colors (White, Blue, Green and Red).

Luminous flux standard LED for high-power LED Calibration (rated luminous flux: 68 lm)

Angular dependence of spectral power distributions
- High color uniformity
- Board spectral power distribution
- The valley of a spectrum is not so deep

Evaluation of LED temperature by thermal image
Development of Standard LEDs for Low-Power LED Calibration

Standard LEDs for CIE Averaged LED Intensity Calibration
Standard LEDs for Luminous Flux Calibration

Luminous flux standard LED for high-power LED ※Joint research with NICHIA Corp

-Speciation of the standard LED -
✓ Customized LED tips in terms of angular distribution and spectral power distribution
✓ High temperature stability
✓ Luminous flux around 60 lm (for White LED:350 mA)
✓ Seasoning treatment over 200 h

Angular dependence of spectral power distributions

Evaluation of LED temperature by thermal image