Strategy 2019 to 2029
Consultative Committee for Acoustics, Ultrasound, and Vibration (CCAUV)

Dr. Takashi Usuda (NMIJ), CCAUV President
Dr. Gianna Panfilo (BIPM), Secretary

Strategic Planning Working Group (SPWG)
 Dr. Michael Gaitan (NIST), Chairperson
 Dr. Salvador Figueroa (DFM), Co-Chair (Acoustics)
 Dr. Bajram Zeqiri (NPL), Co-Chair (Ultrasound)
 Dr. Stephen Robinson (NPL), Co-Chair (Underwater Acoustics)
 Dr. Thomas Bruns (PTB), Co-Chair (Vibration and Shock)
Organization of the Report

• Executive Summary
• Terms of Reference
• Baseline
• Stakeholders
• Future Scan
• Rationale for Various Activities
• Required Key Comparisons and Pilot Studies
• Resource Implications for Piloting Laboratories
• Summary
• Document Revision Schedule
• Bibliography and Supporting Documents
Terms of Reference for the SPWG

• Establish a view on emerging requirements for CCAUV metrology, the way these are driven by societal and industrial stakeholder needs and the key enabling technologies providing solutions to the highlighted challenges;

• Provide input within the area of AUV into the CC Strategy Document; "Future Needs in Metrology" documents; which will be the basis for the strategic plan proposed to the CGPM;

• Provide expert input and advice to the CC Strategy Document identifying future pilot studies and Key Comparisons;

• Advise the CCAUV on the optimal operational structure, e.g. for information gathering, collation and dissemination;

• Share information on national priorities (e.g. roadmapping) for emerging metrology helping NMIs to formulate improved metrological programs;

• Identify areas suitable for collaboration, thereby allowing impact to be accelerated;

• Monitor and respond to developments within other CCs, including the future of the SI, which might impact on the area of CCAUV.
General Information of CCAUV

- Established in 1999
- President: Dr. Takashi Usuda (NMIJ), since 2014
- 18 members, 12 observers, and
- Meets every 2 years
- Last meeting was held 24 to 27 November 2019
- 51 participants at last meeting (experts included)
- 16 CC-KCs and 24 RMO-KCs carried out from 1999 to 2019
- 4 Pilot Studies were carried out from 1999 to 2019
- There are 51 types of CMCs. 1244 CMC entries are published in KCDB of which 890 are linked to a Key Comparison supported by the CCAUV
A-U-V Designations

<table>
<thead>
<tr>
<th>(A) Acoustics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Sound</td>
<td>Airborne sound is sound that is transmitted through the air.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(U) Ultrasound and Underwater Acoustics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound</td>
<td>Ultrasound is sonic energy at a frequency above the human hearing range (20 kHz) whose applications are both in industrial and medical applications.</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Underwater acoustics is the study of the propagation of sound in aquatic environments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V) Vibration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinusoidal Acceleration</td>
<td>Acceleration measurements using sinusoidal steady state mechanical excitation</td>
</tr>
<tr>
<td>Shock Acceleration</td>
<td>Acceleration measurements using transient impact</td>
</tr>
<tr>
<td>Inertial Acceleration (under consideration)</td>
<td>Acceleration measurements by static rotation.</td>
</tr>
</tbody>
</table>
Stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Application</th>
</tr>
</thead>
</table>
| Metrological bodies | High precision metrology
 Precursor to other stakeholders |
| Health | Hearing assessment
 Objective audiology
 Diagnostics (imaging)
 Therapy
 Cleaning and materials processing
 Occupational Safety
 Patient Safety
 Human body comfort (vibration) |
| Industry | Industrial design
 Equipment manufacturers
 Automotive
 Aerospace
 Testing
 Health and safety
 Cleaning procedures
 Robotics and machine tool
 Secondary Calibration and Test Laboratories |
Stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Application</th>
</tr>
</thead>
</table>
| Consumer Electronics | Mobile devices
 | Fitness Tracking |
| Trade | Added value in performance of products |
| Environment | Marine noise pollution
 | Climate change monitoring
 | Air-borne environmental noise
 | Earth quake monitoring
 | Carbon capture and storage
 | Public transportation
 | Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)
 | International Monitoring System (IMS) |
| Society | Environmental protection
 | Psychological influence and human health
 | Music and entertainment |
| Academia | Universities
 | Research Institutes |
| Energy | Offshore oil and gas
 | Marine renewable energy
 | Biofuel production
 | Wind |
Stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards Organizations</td>
<td>Standards Development</td>
</tr>
<tr>
<td>Legal Metrology</td>
<td>Regulators and Administration</td>
</tr>
<tr>
<td>Defense</td>
<td>Defense and security</td>
</tr>
<tr>
<td>Ocean science and marine applications</td>
<td>Ocean processes (e.g. currents and temperature)</td>
</tr>
<tr>
<td></td>
<td>Hydrographic mapping</td>
</tr>
<tr>
<td></td>
<td>Positioning, Navigation</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>Sonar</td>
</tr>
<tr>
<td></td>
<td>Echo-sounding</td>
</tr>
<tr>
<td></td>
<td>Geophysical survey</td>
</tr>
</tbody>
</table>

Action for 2021: Consider identifying stakeholder links to topic areas A and/or U, V
Future Scan

- In strategic planning, it is the participants that benefit the most
- Future scan discussions provide a forum for discovery of international needs and topics for cooperation between NMIs
 - Development of Standards
 - Bilateral Comparisons
 - Pilot Studies
 - Key Comparisons
Future Scan – Driving future KCs

• New or evolving applications are driving incremental needs for widening frequency range or power levels in AUV Key Comparisons.
 - This information drives our planning of future Key Comparisons and extending the range of repeats
• But there are also applications that are driving more fundamental change and which are not yet reflected in our future KCs
 - Digitization
 - Inertial Sensors
Future Scan: Digitization

(example referenced in 2017 report)

ANALOG DEVICES

Single-Axis, High-g,

#MEMS® Accelerometers

ADXL78

FEATURES

- Complete acceleration measurement system on a single monolithic IC
- Available in ±35 g, ±50 g, or ±70 g output full-scale ranges
- Full differential sensor and circuitry for high resistance to EMI/RFI
- Environmentally robust packaging
- Complete mechanical and electrical self-test on digital command
- Output resistance to supply
- Sensitive axes in the plane of the chip
- High linearity (0.2% of full scale)
- Frequency response down to dc
- Low noise
- Low power consumption (1.3 mA)
- Tight sensitivity tolerance and 0 g offset capability
- Largest available prefilter clipping headroom
- 400 Hz, 2-pole Bessel filter
- Single-supply operation
- Compatible with Sn/Pb and Pb-free solder processes
- Qualified for automotive applications

APPLICATIONS

- Vibration monitoring and control
- Vehicle collision sensing
- Shock detection

GENERAL DESCRIPTION

The ADXL78 is a low power, complete single-axis accelerometer with signal conditioned voltage outputs that are on a single monolithic IC. This product measures acceleration with a full-scale range of ±35 g, ±50 g, or ±70 g (minimum). It can also measure both dynamic acceleration (vibration) and static acceleration (gravity).

The ADXL78 is the fourth generation surface micromachined #MEMS® accelerometer from ADI with enhanced performance and lower cost. Designed for use in front and side impact airbag applications, this product also provides a complete cost-effective solution useful for a wide variety of other applications.

The ADXL78 is temperature stable and accurate over the automotive temperature range, with a self-test feature that fully exercises all the mechanical and electrical elements of the sensor with a digital signal applied to a single pin.

The ADXL78 is available in a 5 mm × 5 mm × 2 mm, 8-terminal ceramic LCC package.

FUNCTIONAL BLOCK DIAGRAM

![Functional Block Diagram ADXL78](image-url)

ANALOG DEVICES

Dual-Axis, 60 g to 480 g Sensor with SPI and PSI5

ADXL251

FEATURES

- User selectable sensor g ranges: ±60 g, ±120 g, ±240 g, ±480 g
- Dual x-axis and y-axis sensor
- Compliant to PSI5 Version 2.1 airbag standard
- Synchronous operation
- PSIS-P10P-500/3L and others
- Daisy-chain operation with bidirectional communication
- Application level serial peripheral interface (SPI) communication
- Selectable 16-bit or 10-bit data
- Independently programmable g range and time slot for each axis
- Independent fault discrimination for each axis
- Fully differential analog signal chain
- 0.25 μs data interpolation routine
- User selectable, continuous auto-zero operation
- High resistance to electromagnetic interference (EMI) and radio frequency interference (RFI)
- SPI mode supply voltage: 3.3 V and 5 V, ±5%
- PSI5 mode supply voltage range: 4.5 V to 11.0 V
- Qualified for automotive applications

APPLICATIONS

- Front impact crash sensing
- Side impact crash sensing

GENERAL DESCRIPTION

The ADXL251 is a dual-axis, integrated satellite sensor with user selectable g ranges, compliant to the PSI5 Version 2.1 airbag standard, and backwards compliant to PSI5 Version 1.3. The ADXL251 (x-axis) enables low cost solutions for front impact and side impact airbags, as well as sensor and electronic control unit (ECU) main sensor applications.

Acceleration data is sent to the control module via a digital, 2-wire current loop PSI5 bus. Communication via the SPI bus is also available for ECU applications.

The device uses an ECC protected one time programmable (OTP) memory. The sensor g range is configurable to provide full-scale measurement of ±60 g, ±120 g, ±240 g, or ±480 g acceleration. The user can program each axis independently with multiple g ranges in different time slots. In PSI5 mode, these are four programmable time slots available. The device transmits 16-bit or 10-bit acceleration data to the control module, and can be configured to include either a 1-bit parity check, or a 3-bit cyclic redundancy check (CRC).

The ADXL251 is available in a 4 mm × 4 mm LF CSP package and is specified to operate over the full automotive temperature range, -40°C to 125°C.

FUNCTIONAL BLOCK DIAGRAM

![Functional Block Diagram ADXL251](image-url)
Future Scan: Inertial

Air Bearing Shaker for Vibration Calibration of Reference Accelerometers

Calibration of MEMS Inertial Measurement Unite (IMUs)
Future Scan: Digitization/Inertial

Why should we feel a sense of urgency?

• Inertial Measurement Units are manufactured in the billions per year.
• Most of their applications do not (presently) have life and limb at stake.
• “Nobody is coming to ask us for inertial calibrations.”
• Change is coming: Devices are steadily increasing in performance, new technologies are developing (optical based), and new applications are on the horizon.
• Example: Autonomous vehicles – “IMUs are the heart of the vehicle.”
• Life and limb will be at stake in these new applications and the accuracy of the devices will require calibrations with low uncertainty.
Future Scan: Digitization/Inertial

Considerations by CCAUV regarding pilot studies or new key comparisons to address this include:

• A digital-based standard reference transducer, preferably one that is commercially available and not subject to international restrictions that would inhibit comparisons between countries.
• The development of a standard testing protocol, preferably through ISO, and its adoption by a sufficient number of NMIs.
• For gravity-based measurements, the inclusion of an uncertainty due to the gravitational acceleration as taught in ISO 16063-16 and/or the development of CMCs for local gravitational acceleration at the NMIs.
Key Comparisons: Airborne Sound

<table>
<thead>
<tr>
<th>Sub-area/Reference No.</th>
<th>Description</th>
<th>Rationale</th>
<th>How far the light shines</th>
<th>Expected start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne sound</td>
<td>Comparison of Laboratory Standard Microphones type LS2</td>
<td>Repeat of CCAUV.A-K4</td>
<td>Free-field sensitivity in the frequency range 1 kHz to 30 kHz</td>
<td>2020</td>
</tr>
<tr>
<td>Airborne sound</td>
<td>Comparison of Laboratory Standard Microphones type LS1</td>
<td>Repeat of CCAUV.A-K5</td>
<td>Pressure sensitivity in the frequency range 2 Hz to 20 kHz</td>
<td>2022</td>
</tr>
<tr>
<td>Airborne sound</td>
<td>Comparison of Working Standard Microphones type WS3 (Pilot study)</td>
<td>Extension of the frequency range up to 150 kHz</td>
<td>Free-field sensitivity in the frequency range 10 kHz to 150 kHz</td>
<td>2020</td>
</tr>
<tr>
<td>Airborne sound</td>
<td>Comparison of Laboratory Standard Microphones type LS1/LS2 (pilot study)</td>
<td>Calibration in a diffuse field</td>
<td>Diffuse-field sensitivity in the frequency range 2 Hz to 20 kHz</td>
<td>2020</td>
</tr>
<tr>
<td>Airborne sound</td>
<td>Calibration of LS1/LS2/WS3 microphones (pilot study)</td>
<td>Calibration using optical techniques</td>
<td>Pressure and free-field sensitivity in the combined frequency range 1 Hz to 200 kHz</td>
<td>2022</td>
</tr>
</tbody>
</table>
Key Comparisons: Ultrasound

<table>
<thead>
<tr>
<th>Sub-area/Reference No.</th>
<th>Description</th>
<th>Rationale</th>
<th>How far the light shines</th>
<th>Expected start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound</td>
<td>Ultrasonic power</td>
<td>Repeat of CCAUV.U-K3</td>
<td>Transducer electro-acoustic radiation conductance and transducer ultrasonic output power, 0.01 W – 15 W*</td>
<td>2023</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>Comparison of reference hydrophone calibrations</td>
<td>Repeat of CCAUV.U-K4</td>
<td>End-of-cable loaded hydrophone sensitivity, in nV/Pa, over the frequency range 0.5 MHz – 20 MHz*</td>
<td>2024</td>
</tr>
</tbody>
</table>
Key Comparisons: Underwater Acoustics

<table>
<thead>
<tr>
<th>Sub-area/Reference No.</th>
<th>Description</th>
<th>Rationale</th>
<th>How far the light shines</th>
<th>Expected start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underwater Acoustics</td>
<td>Comparison of pressure calibration of hydrophones</td>
<td>Extension of CCAUV.W-K2 to low frequencies</td>
<td>Free-field hydrophone sensitivity in V/Pa over the frequency range 20 Hz to 1 kHz</td>
<td>2020</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Comparison of free-field calibrations vector sensors (pilot study)</td>
<td>Comparison of particle velocity standards</td>
<td>Free-field sensitivity in Vm⁻¹s over the frequency range 20 Hz to 10 kHz</td>
<td>2022</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Comparison of free-field calibrations of hydrophones</td>
<td>Repeat of CCAUV.W-K2</td>
<td>Free-field hydrophone sensitivity in V/Pa over the frequency range ~250 Hz to 2 MHz</td>
<td>2025</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Comparison of pressure calibration of hydrophones</td>
<td>Extension of CCAUV.W-K2 to low frequencies</td>
<td>Hydrophone pressure sensitivity in V/Pa over the frequency range 2 Hz to 1 kHz</td>
<td>2026</td>
</tr>
</tbody>
</table>
Key Comparisons: Sinusoidal Acceleration

<table>
<thead>
<tr>
<th>Sub-area/Reference No.</th>
<th>Description</th>
<th>Rationale</th>
<th>How far the light shines</th>
<th>Expected start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine-excitation</td>
<td>Comparison of primary calibration in magnitude and phase</td>
<td>Coverage of traditional calibration services in acceleration CCAUV.V-K3</td>
<td>0.1 Hz to 40 Hz This will be a regular KC to be repeated in 10 y intervals</td>
<td>2025</td>
</tr>
<tr>
<td>Sine-excitation</td>
<td>Comparison of primary calibration of magnitude and phase</td>
<td>Coverage of traditional calibration services in acceleration CCAUV.V-K5</td>
<td>10 Hz to 20 kHz This will be a regular KC to be repeated in 10 y intervals</td>
<td>2027</td>
</tr>
<tr>
<td>Angular vibration</td>
<td>Primary calibration of magnitude</td>
<td>Increasing number of NMIs with the capability and demand for CMCs</td>
<td>Depending on the global demand this may become a regular KC</td>
<td>2022</td>
</tr>
<tr>
<td>Sub-area/Reference No.</td>
<td>Description</td>
<td>Rationale</td>
<td>How far the light shines</td>
<td>Expected start</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Shock excitation</td>
<td>Primary calibration according to ISO 16063-13 (peak ratio)</td>
<td>Increasing number of NMIs with the capability and demand for CMCs</td>
<td>500 m/s² to 5000 m/s² This will ultimately be a regular KC to be repeated in a 10-year interval.</td>
<td>2026</td>
</tr>
<tr>
<td>Shock excitation</td>
<td>High intensity (up to 100 km/s²) primary calibration according to ISO16063-43 (pilot study)</td>
<td>The parameter identification is needed for broad band excitation calibration</td>
<td>A pilot study is needed to ensure the applicability of the parameter identification for KC. This will enable subsequent KCs.</td>
<td>2022</td>
</tr>
</tbody>
</table>
SPWG Recommendations

• CCAUV should hold discussion at the general meeting to identify pilot laboratories for Key Comparisons that are currently listed as TBD or TBC in this report.

• CCAUV should form a liaison relationship with the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), similar to its relationships with ISO, IEC, IMEKO.

• CCAUV should consult with other CCs to examine the use of g_n, the physical constant for the standard acceleration of gravity defined in CODATA, expressing concern of its expanding use over the SI unit for acceleration (m/s2).
Thank You!